ODYSSEE 機械学習を活用した設計・生産支援ツール
CAEのデザインスペースの探索手法を得て、幅広い視点へ
ODYSSEE
Solving your engineering problems in real-time

Ready to get started?
製品概要
ODYSSEE CAEはエンジニアが機械学習、人工知能、次元低減モデリング(ROM)および最適化設計をワークフローに適用できるようにするユニークで強力なCAEを中心とした画期的なプラットフォームです。
ODYSSEEの特長
- 機械学習と人工知能
- 統計、データマイニング、データ融合
- 最適化とロバスト性解析
- プロセス探索
- 画像認識と圧縮処理
Lunarの機能
インテリジェントDOE
- DOE(実験計画法)ツールを採用
- 既存のDOEツールを改善
リアルタイムコンピューティング
- パラメータスタディと最適化にかかる計算負荷を削減
- 設計変数の変化範囲に対応する応答量の範囲予測
多くのソフトウェアと物理現象に対応
- すべてのCAEソフトウェアのデータを利用可能
- 構造解析、熱解析、流体解析、音響解析に対応
- CAEデータだけでなく、実験データも利用可能
自動化
- プリ/ポスト処理の自動化
- プリ:Nastran
- ポスト:Marc、Nastran、Cradle CFD
解析計算負荷の削減
- サンプリングポイントを厳選し、負荷を軽減
- アダプティブラーニングシステムにより、学習と改善を並行処理
精度と完全性
- フルタイムのヒストリーファイル出力
- 物理領域の分解を用いた単純な応答曲面法とは異なるモデル化手法
3Dアニメーション生成
- 内挿ではなく再構成
- 応力/変位の等値再構成
評価ツール
- パラメータ品質評価
- DOE品質評価
- アプリケーションに最適な方法を探索
Nastran Sol 700とODYSSEEによる最適化
Nastran Sol 400とLunarを用いたリバースエンジニアリング
Marc-CRADLE連成解析をLunarで最適化
ベネフィット
リアルタイム・シミュレーション
- わずかなシミュレーションに基づくパラメトリック設計と最適化により、プロジェクトの主要なステップをリアルタイムで管理できます
- 概念設計:パラメトリックスタディー、トライアンドエラー
- 詳細設計:最適化、モデルフィッティング
- 検証:信頼性・ロバスト性解析
ODYSSEEは社内のあらゆる関係者にベネフィットをもたらします
- プロジェクトマネージャー
- CAE解析部門
- 技術部門責任者
- 購買・調達部門
Challenges tackled with AI/ML





Overcome your challenges with ODYSSEE solutions






ODYSSEE CAE
Perform CAE design space exploration to broaden your horizons
ODYSSEE CAE is an innovative platform for engineers that integrates machine learning, artificial intelligence, reduced order modelling, and design optimisation into workflows. It enables cost-efficient digital twin creation through real-time predictive modelling and optimisation by leveraging CAE simulation and physical test data. With minimal prior simulations, ODYSSEE CAE can quickly generate accurate results (with deformation, stresses, ...) and full-time history outputs.

ODYSSEE A-EYE
Image based learning and prediction
ODYSSEE A-Eye is a machine learning solution for accelerating product design and development through image and CAD-based learning. Using images, CAD and sensor data as inputs, ODYSSEE A-Eye creates customised AI applications that predict output responses and field data. This enables designers and production technicians to explore the design space thoroughly and design next-generation products efficiently without excessive computing time and cost.

ODYSSEE Solver
The powerful AI engine
ODYSSEE Solver includes the Artificial Intelligence engine Quasar and the optimiser Nova. Quasar is an object-oriented programming language that allows configurable computations for data mining, prediction, interpolation, classification, image processing, matrix operations etc. Quasar is the AI engine powering ODYSSEE products, and it is integrated into multiple Hexagon products:
- Cradle
- MSC Nastran through smart sub-modeling
- Adams through FMU
... and more ...

ODYSSEE Explore
Data analysis and data mining managed by interactive dashboards
ODYSSEE Explore is an application for exploratory data analysis and data visualisation:
- Perform data preprocessing and feature engineering before using the data for machine learning.
- Visualise output responses and outliers.
Scripting with Quasar or Python
ODYSSEE Solver is built on an object-oriented language called Quasar. But it also supports Python.
- Easy to automate any process or integrate into internal software.
- Quasar is a powerful language, but engineers are familiar with Python. They can access ODYSSEE libraries with maintenance and support.
- Built-in AI/ML, ROM, STATS, OPTIMIZATION, RELIABILITY, FORECASTING, and process monitoring libraries.
- "No-code" access to all the above (very little scripting, just a couple of lines...).
Solving problems in real-time & optimising product design
ODYSSEE CAE can predict historical curves and complete field data at all nodes and elements (stress, strain, ...) in a way that is completely data-driven and CAE solver independent.
ODYSSEE can deploy different machine learning and reduced order modeling techniques to extract important features from your data. This enables the creation of highly accurate data-based surrogate models.
ODYSSEE ROM-based optimisers can perform efficient optimisation in real-time. Multi-objective and multi-constraint optimisation studies can be defined with ease.
Parsers - Data-driven and CAE solver independent
To be more efficient during data preparation and preprocessing, ODYSSEE CAE proposes dedicated parsers (MSC Nastran, Adams and LS-DYNA) and a multi-purpose generic parser adaptable for any software.
The parsers dedicated for Marc, Cradle CFD, and MSC Apex are respectively integrated into Mentat ScFlow and MSC Apex.
Adaptive DOE methods
Different algorithms are available for DOE sampling. These algorithms allow adding new sample points to improve space-filling. They also allow reducing the sample points to effectively handle large datasets.
ODYSSEE enables adaptive sampling that generates results in real-time when new points are added.
Embed ODYSSEE models in CAE through FMU and smart superelements
Parametric superelement (for MSC Nastran or Marc), parametric FMUs (for Adams and electronics devices...) can be generated with ease in ODYSSEE.
Replace a complete model with an ODYSSEE representative element for quick parametric studies and faster computation times.
Directly use images and CAD (step, stl) files for modeling and parametric design or production/quality
Process images (JPG and PNG formats) and CAD files (STEP and STL formats) directly in A-Eye. Easily associate these with scalars, curves and labels.
Images can be geometry design views, manufactured parts snapshots or simulation field data.
The capability can be implemented for quality inspection, manufacturing fault detection and forecasting.
Scripting with Quasar or Python
ODYSSEE Solver is built on an object-oriented language called Quasar. But it also supports Python.
- Easy to automate any process or integrate into internal software.
- Quasar is a powerful language, but engineers are familiar with Python. They can access ODYSSEE libraries with maintenance and support.
- Built-in AI/ML, ROM, STATS, OPTIMIZATION, RELIABILITY, FORECASTING, and process monitoring libraries.
- "No-code" access to all the above (very little scripting, just a couple of lines...).
Solving problems in real-time & optimising product design
ODYSSEE CAE can predict historical curves and complete field data at all nodes and elements (stress, strain, ...) in a way that is completely data-driven and CAE solver independent.
ODYSSEE can deploy different machine learning and reduced order modeling techniques to extract important features from your data. This enables the creation of highly accurate data-based surrogate models.
ODYSSEE ROM-based optimisers can perform efficient optimisation in real-time. Multi-objective and multi-constraint optimisation studies can be defined with ease.
Parsers - Data-driven and CAE solver independent
To be more efficient during data preparation and preprocessing, ODYSSEE CAE proposes dedicated parsers (MSC Nastran, Adams and LS-DYNA) and a multi-purpose generic parser adaptable for any software.
The parsers dedicated for Marc, Cradle CFD, and MSC Apex are respectively integrated into Mentat ScFlow and MSC Apex.
Adaptive DOE methods
Different algorithms are available for DOE sampling. These algorithms allow adding new sample points to improve space-filling. They also allow reducing the sample points to effectively handle large datasets.
ODYSSEE enables adaptive sampling that generates results in real-time when new points are added.
Embed ODYSSEE models in CAE through FMU and smart superelements
Parametric superelement (for MSC Nastran or Marc), parametric FMUs (for Adams and electronics devices...) can be generated with ease in ODYSSEE.
Replace a complete model with an ODYSSEE representative element for quick parametric studies and faster computation times.
Directly use images and CAD (step, stl) files for modeling and parametric design or production/quality
Process images (JPG and PNG formats) and CAD files (STEP and STL formats) directly in A-Eye. Easily associate these with scalars, curves and labels.
Images can be geometry design views, manufactured parts snapshots or simulation field data.
The capability can be implemented for quality inspection, manufacturing fault detection and forecasting.
Scripting with Quasar or Python
ODYSSEE Solver is built on an object-oriented language called Quasar. But it also supports Python.
- Easy to automate any process or integrate into internal software.
- Quasar is a powerful language, but engineers are familiar with Python. They can access ODYSSEE libraries with maintenance and support.
- Built-in AI/ML, ROM, STATS, OPTIMIZATION, RELIABILITY, FORECASTING, and process monitoring libraries.
- "No-code" access to all the above (very little scripting, just a couple of lines...).
Scripting with Quasar or Python
ODYSSEE Solver is built on an object-oriented language called Quasar. But it also supports Python.
- Easy to automate any process or integrate into internal software.
- Quasar is a powerful language, but engineers are familiar with Python. They can access ODYSSEE libraries with maintenance and support.
- Built-in AI/ML, ROM, STATS, OPTIMIZATION, RELIABILITY, FORECASTING, and process monitoring libraries.
- "No-code" access to all the above (very little scripting, just a couple of lines...).
Solving problems in real-time & optimising product design
ODYSSEE CAE can predict historical curves and complete field data at all nodes and elements (stress, strain, ...) in a way that is completely data-driven and CAE solver independent.
ODYSSEE can deploy different machine learning and reduced order modeling techniques to extract important features from your data. This enables the creation of highly accurate data-based surrogate models.
ODYSSEE ROM-based optimisers can perform efficient optimisation in real-time. Multi-objective and multi-constraint optimisation studies can be defined with ease.
Parsers - Data-driven and CAE solver independent
To be more efficient during data preparation and preprocessing, ODYSSEE CAE proposes dedicated parsers (MSC Nastran, Adams and LS-DYNA) and a multi-purpose generic parser adaptable for any software.
The parsers dedicated for Marc, Cradle CFD, and MSC Apex are respectively integrated into Mentat ScFlow and MSC Apex.
Adaptive DOE methods
Different algorithms are available for DOE sampling. These algorithms allow adding new sample points to improve space-filling. They also allow reducing the sample points to effectively handle large datasets.
ODYSSEE enables adaptive sampling that generates results in real-time when new points are added.
Embed ODYSSEE models in CAE through FMU and smart superelements
Parametric superelement (for MSC Nastran or Marc), parametric FMUs (for Adams and electronics devices...) can be generated with ease in ODYSSEE.
Replace a complete model with an ODYSSEE representative element for quick parametric studies and faster computation times.
Directly use images and CAD (step, stl) files for modeling and parametric design or production/quality
Process images (JPG and PNG formats) and CAD files (STEP and STL formats) directly in A-Eye. Easily associate these with scalars, curves and labels.
Images can be geometry design views, manufactured parts snapshots or simulation field data.
The capability can be implemented for quality inspection, manufacturing fault detection and forecasting.
Scripting with Quasar or Python
ODYSSEE Solver is built on an object-oriented language called Quasar. But it also supports Python.
- Easy to automate any process or integrate into internal software.
- Quasar is a powerful language, but engineers are familiar with Python. They can access ODYSSEE libraries with maintenance and support.
- Built-in AI/ML, ROM, STATS, OPTIMIZATION, RELIABILITY, FORECASTING, and process monitoring libraries.
- "No-code" access to all the above (very little scripting, just a couple of lines...).
Solving problems in real-time & optimising product design
ODYSSEE CAE can predict historical curves and complete field data at all nodes and elements (stress, strain, ...) in a way that is completely data-driven and CAE solver independent.
ODYSSEE can deploy different machine learning and reduced order modeling techniques to extract important features from your data. This enables the creation of highly accurate data-based surrogate models.
ODYSSEE ROM-based optimisers can perform efficient optimisation in real-time. Multi-objective and multi-constraint optimisation studies can be defined with ease.
Parsers - Data-driven and CAE solver independent
To be more efficient during data preparation and preprocessing, ODYSSEE CAE proposes dedicated parsers (MSC Nastran, Adams and LS-DYNA) and a multi-purpose generic parser adaptable for any software.
The parsers dedicated for Marc, Cradle CFD, and MSC Apex are respectively integrated into Mentat ScFlow and MSC Apex.
Adaptive DOE methods
Different algorithms are available for DOE sampling. These algorithms allow adding new sample points to improve space-filling. They also allow reducing the sample points to effectively handle large datasets.
ODYSSEE enables adaptive sampling that generates results in real-time when new points are added.
Embed ODYSSEE models in CAE through FMU and smart superelements
Parametric superelement (for MSC Nastran or Marc), parametric FMUs (for Adams and electronics devices...) can be generated with ease in ODYSSEE.
Replace a complete model with an ODYSSEE representative element for quick parametric studies and faster computation times.
Directly use images and CAD (step, stl) files for modeling and parametric design or production/quality
Process images (JPG and PNG formats) and CAD files (STEP and STL formats) directly in A-Eye. Easily associate these with scalars, curves and labels.
Images can be geometry design views, manufactured parts snapshots or simulation field data.
The capability can be implemented for quality inspection, manufacturing fault detection and forecasting.
Scripting with Quasar or Python
ODYSSEE Solver is built on an object-oriented language called Quasar. But it also supports Python.
- Easy to automate any process or integrate into internal software.
- Quasar is a powerful language, but engineers are familiar with Python. They can access ODYSSEE libraries with maintenance and support.
- Built-in AI/ML, ROM, STATS, OPTIMIZATION, RELIABILITY, FORECASTING, and process monitoring libraries.
- "No-code" access to all the above (very little scripting, just a couple of lines...).
Learn more about ODYSSEE
Whitepaper
Emergence of artificial intelligence and machine learning
Whitepaper
Data science and artificial intelligence
Whitepaper
Optimising gearbox performance
Brochure
Design & Engineering simulation solutions
Whitepaper
Emergence of artificial intelligence and machine learning
Whitepaper
Data science and artificial intelligence
Whitepaper
Optimising gearbox performance
Brochure
Design & Engineering simulation solutions
Whitepaper
Emergence of artificial intelligence and machine learning
Whitepaper
Data science and artificial intelligence
Whitepaper
Optimising gearbox performance
Whitepaper
Optimising gearbox performance
Brochure
Design & Engineering simulation solutions
Whitepaper
Emergence of artificial intelligence and machine learning
Whitepaper
Data science and artificial intelligence
Whitepaper
Optimising gearbox performance
Brochure
Design & Engineering simulation solutions
Whitepaper
Emergence of artificial intelligence and machine learning
Whitepaper
Data science and artificial intelligence
Whitepaper
Optimising gearbox performance
Automotive
AI/ML based trimmed body NTF and global modes prediction and optimisation using ODYSSEE CAE
Energy
Building and running the smartest solar farm in the world
Automotive
Optimising gearbox mechanisms
Automotive
Pedestrian protection using the ODYSSEE suite
Automotive
Reduced order modeling of advanced versatile seats
Automotive
Dynamic load prediction of a wheel
Automotive
Exploration of innovative crash structure design trends
Automotive
Injury prediction considering driving posture
Medical
Real-time design of 3D-printed orthopedic insoles
Oil & Gas
Optimisation of casing buckling and deformation responses in shale gas wells
Materials
How to optimise the design of vibration insulators using ML-ROM
Automotive
AI/ML based prediction of crash parameters using ODYSSEE CAE
Automotive
AI/ML based trimmed body NTF and global modes prediction and optimisation using ODYSSEE CAE
Energy
Building and running the smartest solar farm in the world
Automotive
Optimising gearbox mechanisms
Automotive
Pedestrian protection using the ODYSSEE suite
Automotive
Reduced order modeling of advanced versatile seats
Automotive
Dynamic load prediction of a wheel
Automotive
Exploration of innovative crash structure design trends
Automotive
Injury prediction considering driving posture
Medical
Real-time design of 3D-printed orthopedic insoles
Oil & Gas
Optimisation of casing buckling and deformation responses in shale gas wells
Materials
How to optimise the design of vibration insulators using ML-ROM
Automotive
AI/ML based prediction of crash parameters using ODYSSEE CAE
Automotive
AI/ML based trimmed body NTF and global modes prediction and optimisation using ODYSSEE CAE
Energy
Building and running the smartest solar farm in the world
Automotive
Optimising gearbox mechanisms
Automotive
Optimising gearbox mechanisms
Automotive
Pedestrian protection using the ODYSSEE suite
Automotive
Reduced order modeling of advanced versatile seats
Automotive
Dynamic load prediction of a wheel
Automotive
Exploration of innovative crash structure design trends
Automotive
Injury prediction considering driving posture
Medical
Real-time design of 3D-printed orthopedic insoles
Oil & Gas
Optimisation of casing buckling and deformation responses in shale gas wells
Materials
How to optimise the design of vibration insulators using ML-ROM
Automotive
AI/ML based prediction of crash parameters using ODYSSEE CAE
Automotive
AI/ML based trimmed body NTF and global modes prediction and optimisation using ODYSSEE CAE
Energy
Building and running the smartest solar farm in the world
Automotive
Optimising gearbox mechanisms
Automotive
Pedestrian protection using the ODYSSEE suite
Automotive
Reduced order modeling of advanced versatile seats
Automotive
Dynamic load prediction of a wheel
Automotive
Exploration of innovative crash structure design trends
Automotive
Injury prediction considering driving posture
Medical
Real-time design of 3D-printed orthopedic insoles
Oil & Gas
Optimisation of casing buckling and deformation responses in shale gas wells
Materials
How to optimise the design of vibration insulators using ML-ROM
Automotive
AI/ML based prediction of crash parameters using ODYSSEE CAE
Automotive
AI/ML based trimmed body NTF and global modes prediction and optimisation using ODYSSEE CAE
Energy
Building and running the smartest solar farm in the world
Automotive
Optimising gearbox mechanisms
-
Webinars